4.8 Article

Effects of Molecular Orientation of a Fullerene Derivative at the Donor/Acceptor Interface on the Device Performance of Organic Photovoltaics

期刊

CHEMISTRY OF MATERIALS
卷 30, 期 22, 页码 8233-8243

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.8b03659

关键词

-

资金

  1. JSPS [18K04944, 16K05956]

向作者/读者索取更多资源

Designing donor/acceptor (D/A) interfaces that can efficiently generate free carriers is an attractive research target for organic photovoltaics (OPVs). While many reports suggest that the molecular orientation of the donor at the D/A interface influences the free-charge generation and recombination, the effects of the acceptor orientation on these processes remain elusive. In this work, we demonstrate that [6,6]-phenyl-C-61-butyric acid methyl ester (PC61BM) changes its molecular orientation at the film surface on crystallization, resulting in the preferential surface exposure of the side chains. Photoelectron spectra of amorphous- and crystalline-PC61BM/sexithiophene (6T) interfaces and analysis of the external quantum efficiency and electroluminescence of bilayer OPVs in the charge-transfer absorption range reveal that the orientational change of PC61BM raises the energy of the charge-transfer state at the D/A interface. In addition, the PC61BM side chain at the crystalline-PC61BM/6T interface reduces the electronic coupling between the charge-transfer and ground states, suppressing carrier recombination without sacrificing photocurrent. These two factors lead to the higher open-circuit voltage of crystalline-PC61BM/6T OPV compared with its amorphous counterpart. This work directly links the interface and photovoltaic properties, highlighting the role of the acceptor's orientation in determining the efficiency of OPVs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据