4.8 Article

High-Performance Double-Network Ion Gels with Fast Thermal Healing Capability via Dynamic Covalent Bonds

期刊

CHEMISTRY OF MATERIALS
卷 30, 期 21, 页码 7752-7759

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.8b03104

关键词

-

资金

  1. National Natural Science Foundation of China [51473005, 51725301]

向作者/读者索取更多资源

A tough double-network (DN) ion gel composed of chemically cross-linked poly(furfuryl methacrylate-co-methyl methacrylate) (P(FMA-co-MMA)) and physically cross-linked poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)) networks with 80 wt % of ionic liquid (IL) was fabricated via a one-pot method. This ion gel exhibits excellent mechanical strength and considerable ionic conductivity, which can be used as a solid gel electrolyte. Upon an adjustment of the weight ratio of P(FMA-co-MMA) to P(VDF-co-HFP) and the content of the cross-linker, remarkably robust DN ion gel (failure tensile stress 660 kPa, strain 268%; failure compressive stress 17 MPa, strain 85%) was obtained. The high mechanical strength is attributed to the chemical/physical interpenetrating networks. The rigid chemically cross-linked P(FMA-co-MMA) network dissipates most of the loading energy, and the ductile physically cross-linked P(VDF-co-HFP) network provides stretchability for the whole gel. More importantly, the P(FMA-co-MMA) network is formed by dynamic covalent bonds that can undergo a thermally reversible reaction, giving the gel a unique and effective thermal healing capability. Furthermore, with the high content of IL, the DN ion gel possesses a high ionic conductivity of 3.3 mS cm(-1) at room temperature, which is higher than those of most solid polymer electrolytes and comparable to those of commercial organic liquid electrolytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据