4.4 Article

Computational insights into the different catalytic activities of CYP3A4 and CYP3A5 toward schisantherin E

期刊

CHEMICAL BIOLOGY & DRUG DESIGN
卷 93, 期 5, 页码 854-864

出版社

WILEY
DOI: 10.1111/cbdd.13475

关键词

catalytic activity; molecular docking; molecular dynamics

资金

  1. National Nature Science Foundation of China [81373328, 81673356]
  2. National Key Research and Development Program of China [2016YFA0502304]

向作者/读者索取更多资源

The cytochromes CYP3A4 and CYP3A5 share 84% sequence identity, but they exhibit different catalytic activities toward some substrates. Schisantherin E (SE) was recently identified as a selective substrate of CYP3A5, which exhibited catalytic efficiency that was more than 23 times higher than CYP3A4. At present, however, the structural determinants responsible for the different catalytic activities of the two enzymes toward SE have not been fully understood. In this study, a combination of molecular docking, molecular dynamic simulations, and binding free energy calculation was performed on the CYP3A4/CYP3A5-SE systems to investigate the issue. The results demonstrate that Ser119 in CYP3A4 and Glu374 in CYP3A5 formed direct hydrogen bonding with SE, respectively. Additionally, one water molecule located between the B-C loop and the I helix mediated different hydrogen-bonding networks between CYP3A4/3A5 and SE. The residue differences (Phe/Leu108 and Leu/Phe210) triggered the distinct conformational changes of the Phe-cluster residues, especially Phe213 and Phe215, which formed stronger hydrophobic interactions with SE in CYP3A5. The calculated binding free energies were consistent with the experimental results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据