4.7 Article

Magnetic and structural characterization of Nb3+-substituted CoFe2O4 nanoparticles

期刊

CERAMICS INTERNATIONAL
卷 45, 期 7, 页码 8222-8232

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2019.01.125

关键词

Substituted spinel ferrites; CoFe2O4; Magneto-optical properties; TEM analysis

向作者/读者索取更多资源

This study investigated the effect of Nb3+ substitution on the magnetic and structural properties of CoFe2O4 nanoparticles (NPs) synthesized by hydrothermal approach. The formation of a single phase of spinel ferrite was confirmed through X-ray powder diffraction, and crystallite sizes in the range 18-30 nm were observed. Moreover, it found that the Fourier transform infrared (FT-IR) spectra of the NPs included the main vibration bands of the spinel structure. The partially cubic structure was confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The energy band gaps for CoFe2O4 were estimated to be in the range 0.48-0.53 eV for Nb3+ content x = 0.0-0.10. Magnetization measurements at room temperature (RT; 300 K) and at 10 K were performed on spinel CoFe2O4 (0.00 <= x <= 0.10) NPs using a vibrating sample magnetometer (VSM). Nb3+ doping significantly changed the magnetization and coercivity of the Co ferrite samples. RT hysteresis curves indicated well-defined ferrimagnetic behavior for all prepared NPs with saturation magnetization (M-s) in the range 44.45 - 49.40 emu/g and remanent magnetization (M r ) in the range 12.16 - 17.90 emu/g. The coercive field (H-c) is found to be equal 936 Oe and is decreased with Nb3+ substitutions. However, hysteresis curves at 10 K showed finite remanent specific magnetization (1.90-6.70 emu/g) but significant asymmetric coercivity (715-2810 Oe), particularly for the Nb3+-doped samples. At 10 K, the magnetization values were 4-6 times smaller but symmetric coercivity field values were 2-3 times larger compared with the RT-VSM curves. The obtained magnetic parameters indicated the semi-hard magnetic character of the Co ferrite samples at low temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据