4.6 Article

PGC-1α activity in nigral dopamine neurons determines vulnerability to α-synuclein

期刊

出版社

BMC
DOI: 10.1186/s40478-015-0200-8

关键词

PGC-1 alpha; alpha-synuclein; Parkinson's disease; Mitochondria; Aging; Neurodegeneration

资金

  1. Swiss National Science Foundation [31003A_120653/135696]
  2. European Community's FP7 program [HEALTH-F5-2008-222925]
  3. NIH [RO1 DK045416]

向作者/读者索取更多资源

Introduction: Mitochondrial dysfunction and oxidative stress are critical factors in the pathogenesis of age-dependent neurodegenerative diseases. PGC-1 alpha, a master regulator of mitochondrial biogenesis and cellular antioxidant defense, has emerged as a possible therapeutic target for Parkinson's disease, with important roles in the function and survival of dopaminergic neurons in the substantia nigra. The objective of this study is to determine if the loss of PGC-1 alpha activity contributes to alpha-synuclein-induced degeneration. Results: We explore the vulnerability of PGC-1 alpha null mice to the accumulation of human alpha-synuclein in nigral neurons, and assess the neuroprotective effect of AAV-mediated PGC-1 alpha expression in this experimental model. Using neuronal cultures derived from these mice, mitochondrial respiration and production of reactive oxygen species are assessed in conditions of human alpha-synuclein overexpression. We find ultrastructural evidence for abnormal mitochondria and fragmented endoplasmic reticulum in the nigral dopaminergic neurons of PGC-1 alpha null mice. Furthermore, PGC-1 alpha null nigral neurons are more prone to degenerate following overexpression of human alpha-synuclein, an effect more apparent in male mice. PGC-1 alpha overexpression restores mitochondrial morphology, oxidative stress detoxification and basal respiration, which is consistent with the observed neuroprotection against alpha-synuclein toxicity in male PGC-1 alpha null mice. Conclusions: Altogether, our results highlight an important role for PGC-1 alpha in controlling the mitochondrial function of nigral neurons accumulating alpha-synuclein, which may be critical for gender-dependent vulnerability to Parkinson's disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据