4.8 Article

PIN1 Maintains Redox Balance via the c-Myc/NRF2 Axis to Counteract Kras-Induced Mitochondrial Respiratory Injury in Pancreatic Cancer Cells

期刊

CANCER RESEARCH
卷 79, 期 1, 页码 133-145

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-18-1968

关键词

-

类别

资金

  1. National Science Fund for Distinguished Young Scholars of China [81625016]
  2. National Natural Science Foundation of China [81502031, 81602085, 81772555]
  3. Shanghai Sailing Program [16YF1401800, 17YF1402500]

向作者/读者索取更多资源

Kras is a decisive oncogene in pancreatic ductal adenocarcinoma (PDAC). PIN1 is a key effector involved in the Kras/ERK axis, synergistically mediating various cellular events. However, the underlying mechanism by which PIN1 promotes the development of PDAC remains unclear. Here we sought to elucidate the effect of PIN1 on redox homeostasis in Kras-driven PDAC. PIN1 was prevalently upregulated in PDAC and predicted the prognosis of the disease, especially Kras-mutant PDAC. Downregulation of PIN1 inhibited PDAC cell growth and promoted apoptosis, partially due to mitochondrial dysfunction. Silencing of PIN1 damaged basal mitochondrial function by significantly increasing intracellular ROS. Furthermore, PIN1 maintained redox balance via synergistic activation of c-Myc and NRF2 to upregulate expression of antioxidant response element driven genes in PDAC cells. This study elucidates a new mechanism by which Kras/ERK/NRF2 promotes tumor growth and identifies PIN1 as a decisive target in therapeutic strategies aimed at disturbing the redox balance in pancreatic cancer. Significance: This study suggests that antioxidation protects Kras-mutant pancreatic cancer cells from oxidative injury, which may contribute to development of a targeted therapeutic strategy for Kras-driven PDAC by impairing redox homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据