4.7 Article

Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving

期刊

BUILDING AND ENVIRONMENT
卷 147, 期 -, 页码 11-22

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2018.10.009

关键词

Fresh outdoor air ratio; Targeted indoor air quality; Energy saving; CO2 removal efficiency; Stratum ventilation

资金

  1. National Natural Science Foundation of China [51608066]
  2. Research Grants Council of the Hong Kong Special Administrative Region, China [11210617]

向作者/读者索取更多资源

Stratum ventilation can energy efficiently provide good inhaled indoor air quality with a proper operation (e.g., fresh outdoor air ratio). However, the non-uniform CO2 distribution in a stratum-ventilated room challenges the provision of targeted indoor air quality. This study proposes an optimization on the fresh outdoor air ratio of stratum ventilation for both the targeted indoor air quality and maximal energy saving. A model of CO2 concentration in the breathing zone is developed by coupling CO2 removal efficiency in the breathing zone and mass conservation laws. With the developed model, the ventilation parameters corresponding to different fresh outdoor air ratios are quantified to achieve the targeted indoor air quality (i.e., targeted CO2 concentration in the breathing zone). Using the fresh outdoor air ratios and corresponding ventilation parameters as inputs, energy performance evaluations of the air conditioning system are conducted by building energy simulations. The fresh outdoor air ratio with the minimal energy consumption is determined as the optimal one. Experiments show that the mean absolute error of the developed model of CO2 concentration in the breathing zone is 1.9%. The effectiveness of the proposed optimization is demonstrated using TRNSYS that the energy consumption of the air conditioning system with stratum ventilation is reduced by 6.4% while achieving the targeted indoor air quality. The proposed optimization is also promising for other ventilation modes for targeted indoor air quality and improved energy efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据