4.5 Article

Regional growth trajectories of cortical myelination in adolescents and young adults: longitudinal validation and functional correlates

期刊

BRAIN IMAGING AND BEHAVIOR
卷 14, 期 1, 页码 242-266

出版社

SPRINGER
DOI: 10.1007/s11682-018-9980-3

关键词

Cortical myelin; Development; Adolescence; Early adulthood

资金

  1. U.S. National Institute on Alcohol Abuse and Alcoholism [AA021697, AA005965, AA010723, AA017168]

向作者/读者索取更多资源

Adolescence is a time of continued cognitive and emotional evolution occurring with continuing brain development involving synaptic pruning and cortical myelination. The hypothesis of this study is that heavy myelination occurs in cortical regions with relatively direct, predetermined circuitry supporting unimodal sensory or motor functions and shows a steep developmental slope during adolescence (12-21 years) until young adulthood (22-35 years) when further myelination decelerates. By contrast, light myelination occurs in regions with highly plastic circuitry supporting complex functions and follows a delayed developmental trajectory. In support of this hypothesis, cortical myelin content was estimated and harmonized across publicly available datasets provided by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) and the Human Connectome Project (HCP). The cross-sectional analysis of 226 no-to-low alcohol drinking NCANDA adolescents revealed relatively steeper age-dependent trajectories of myelin growth in unimodal primary motor cortex and flatter age-dependent trajectories in multimodal mid/posterior cingulate cortices. This pattern of continued myelination showed smaller gains when the same analyses were performed on 686 young adults of the HCP cohort free of neuropsychiatric diagnoses. Critically, a predicted correlation between a motor task and myelin content in motor or cingulate cortices was found in the NCANDA adolescents, supporting the functional relevance of this imaging neurometric. Furthermore, the regional trajectory slopes were confirmed by performing longitudinally consistent analysis of cortical myelin. In conclusion, coordination of myelin content and circuit complexity continues to develop throughout adolescence, contributes to performance maturation, and may represent active cortical development climaxing in young adulthood.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据