4.5 Article

Multilevel diffusion tensor imaging classification technique for characterizing neurobehavioral disorders

期刊

BRAIN IMAGING AND BEHAVIOR
卷 14, 期 3, 页码 641-652

出版社

SPRINGER
DOI: 10.1007/s11682-018-0002-2

关键词

Diffusion tensor imaging; Fractional anisotropy; Fiber tracking; Graph theory; Machine learning

向作者/读者索取更多资源

This proposed novel method consists of three levels of analyses of diffusion tensor imaging data: 1) voxel level analysis of fractional anisotropy of white matter tracks, 2) connection level analysis, based on fiber tracks between specific brain regions, and 3) network level analysis, based connections among multiple brain regions. Machine-learning techniques of (Fisher score) feature selection, (Support Vector Machine) pattern classification, and (Leave-one-out) cross-validation are performed, for recognition of the neural connectivity patterns for diagnostic purposes. For validation proposes, this multilevel approach achieved an average classification accuracy of 90% between Alzheimer's disease and healthy controls, 83% between Alzheimer's disease and mild cognitive impairment, and 83% between mild cognitive impairment and healthy controls. The results indicate that the multilevel diffusion tensor imaging approach used in this analysis is a potential diagnostic tool for clinical evaluations of brain disorders. The presented pipeline is now available as a tool for scientifically applications in a broad range of studies from both clinical and behavioral spectrum, which includes studies about autism, dyslexia, schizophrenia, dementia, motor body performance, among others.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据