4.7 Article

Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.)

期刊

BMC PLANT BIOLOGY
卷 18, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12870-018-1457-4

关键词

Antioxidant; Gibberellin; Photosynthesis efficiency; Plant growth regulator; Reactive nitrogen species; Reactive oxygen species

资金

  1. Rural Development Administration, Republic of Korea [PJ01367301]

向作者/读者索取更多资源

BackgroundWaterlogging (WL) is a key factor hindering soybean crop productivity worldwide. Plants utilize various hormones to avoid various stress conditions, including WL stress; however, the physiological mechanisms are still not fully understood.ResultsTo identify physiological mechanisms during WL stress, different phytohormones, such as ethephon (ETP; donor source of ethylene), abscisic acid, gibberellins, indole-3-acetic acid, kinetin, jasmonic acid, and salicylic acid were exogenously applied to soybean plants. Through this experiment, we confirmed the beneficial effects of ETP treatment. Thus, we selected ETP as a candidate hormone to mitigate WL. Further mechanistic investigation of the role of ETP in waterlogging tolerance was carried out. Results showed that ETP application mitigated WL stress, significantly improved the photosynthesis pigment, and increased the contents of endogenous GA(s) compared to those in untreated plants. The amino acid contents during WL stress were significantly activated by EPT treatments. The amino acid contents were significantly higher in the 100M ETP-treated soybean plants than in the control. ETP application induced adventitious root initiation, increased root surface area, and significantly increased the expressions of glutathione transferases and relative glutathione activity compared to those of non-ETP-treated plants. ETP-treated soybeans produced a higher up-regulation of protein content and glutathione S-transferase (GSTs) than did soybeans under the WL only treatment.ConclusionsIn conclusion, the current results suggest that ETP application enabled various biochemical and transcriptional modulations. In particular, ETP application could stimulate the higher expression of GST3 and GST8. Thus, increased GST3 and GST8 induced 1) increased GSH activity, 2) decreased reactive oxygen species (ROS), 3) mitigation of cell damage in photosynthetic apparatus, and 4) improved phenotype consecutively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据