4.7 Article

Integration of conventional and advanced molecular tools to track footprints of heterosis in cotton

期刊

BMC GENOMICS
卷 19, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12864-018-5129-4

关键词

Heterosis; LxT; GCA; SCA; Microsatellite markers; hQTL; Favorable alleles; Fiber quality; Cotton

资金

  1. National Natural Science Foundation of China [31571716]
  2. National Key Research and Development Program of China [2016YFD0101401, 2016YFD0100203]
  3. National Science and Technology Support Program of China [2013BAD01B03]

向作者/读者索取更多资源

BackgroundHeterosis, a multigenic complex trait extrapolated as sum total of many phenotypic features, is widely utilized phenomenon in agricultural crops for about a century. It is mainly focused on establishing vigorous cultivars with the fact that its deployment in crops necessitates the perspective of genomic impressions on prior selection for metric traits. In spite of extensive investigations, the actual mysterious genetic basis of heterosis is yet to unravel. Contemporary crop breeding is aimed at enhanced crop production overcoming former achievements. Leading cotton improvement programs remained handicapped to attain significant accomplishments.ResultsIn mentioned context, a comprehensive project was designed involving a large collection of cotton accessions including 284 lines, 5 testers along with their respective F-1 hybrids derived from Line x Tester mating design were evaluated under 10 diverse environments. Heterosis, GCA and SCA were estimated from morphological and fiber quality traits by LxT analysis. For the exploration of elite marker alleles related to heterosis and to provide the material carrying such multiple alleles the mentioned three dependent variables along with trait phenotype values were executed for association study aided by microsatellites in mixed linear model based on population structure and linkage disequilibrium analysis. Highly significant 46 microsatellites were discovered in association with the fiber and yield related traits under study. It was observed that two-thirds of the highly significant associated microsatellites related to fiber quality were distributed on D sub-genome, including some with pleiotropic effect. Newly discovered 32 hQTLs related to fiber quality traits are one of prominent findings from current study. A set of 96 exclusively favorable alleles were discovered and C tester (A971Bt) posited a major contributor of these alleles primarily associated with fiber quality.ConclusionsHence, to uncover hidden facts lying within heterosis phenomenon, discovery of additional hQTLs is required to improve fibre quality. To grab prominent improvement in influenced fiber quality and yield traits, we suggest the A971 Bt cotton cultivar as fundamental element in advance breeding programs as a parent of choice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据