4.7 Article

Low-temperature-induced changes in the transcriptome reveal a major role of CgSVP genes in regulating flowering of Cymbidium goeringii

期刊

BMC GENOMICS
卷 20, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12864-019-5425-7

关键词

Cymbidium goeringii; Low-temperature; Flowering; Transcriptome; SVP

资金

  1. National Natural Science Foundation of China [31872151, 31672184]
  2. Natural Science Foundation of Guangdong province [2017A030312004, 2017B020201004]
  3. Orchid Industry Technology Innovation Alliance [2018LM1095, 2017A070702008]

向作者/读者索取更多资源

BackgroundCymbidium goeringii is one of the most horticulturally important and popular ornamental plants in the orchid family (Orchidaceae). It blooms in winter during January-March and a period of low temperature is necessary for its normal flowering, otherwise there is flower bud abortion, which seriously affects the economic benefits. However, the molecular mechanism underlying winter-blooming behavior in C. goeringii is unclear.ResultsIn this research, we firstly study the flowering physiology of C. goeringii by cytobiology observations and physiological experiments. Using comparative transcriptome analysis, we identified 582 differentially expressed unigenes responding to cold treatment that were involved in metabolic process, flowering time, hormone signaling, stress response, and cell cycle, implying their potential roles in regulating winter-blooming of C. goeringii. Twelve MADS-box genes among them were investigated by full-length cDNA sequence analysis and expression validation, which indicated that three genes within the SHORT VEGETATIVE PHASE (SVP) sub-group had the most significant repressed expression after cold treatment. Further analysis revealed that the SVP genes showed population variation in expression that correlated with cold-regulated flowering and responded to low temperature earlier than the flowering pathway integrators CgAP1, CgSOC1, and CgLFY, suggesting a potential role of CgSVP genes in the early stage of low-temperature-induced blooming of C. goeringii. Moreover, a yeast two-hybrid experiment confirmed that CgSVP proteins interacted with CgAP1 and CgSOC1, suggesting that they may synergistically control the process of C. goeringii flowering in winter.ConclusionsThis study represents the first exploration of flowering physiology of C. goeringii and provides gene expression information that could facilitate our understanding of molecular regulation of orchid plant winter-flowering, which could provide new insights and practical guidance for improving their flowering regulation and molecular breeding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据