4.7 Article

Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L

期刊

BMC GENOMICS
卷 20, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12864-018-5356-8

关键词

Flowering time; QTL; Gene expression; RNA-Seq; Brassica napus

资金

  1. National Natural Science Foundation of China [31771830, 31701335]
  2. Fundamental Research Funds for Central Universities [XDJK2017A009]
  3. Chongqing Science and Technology Commission [cstc2016shmszx80083]
  4. 111 Project [B12006]

向作者/读者索取更多资源

BackgroundOptimum flowering time is a key agronomic trait in Brassica napus. To investigate the genetic architecture and genetic regulation of flowering time in this important crop, we conducted quantitative trait loci (QTL) analysis of flowering time in a recombinant inbred line (RIL) population, including lines with extreme differences in flowering time, in six environments, along with RNA-Seq analysis.ResultsWe detected 27 QTLs distributed on eight chromosomes among six environments, including one major QTL on chromosome C02 that explained 11-25% of the phenotypic variation and was stably detected in all six environments. RNA-Seq analysis revealed 105 flowering time-related differentially expressed genes (DEGs) that play roles in the circadian clock/photoperiod, autonomous pathway, and hormone and vernalization pathways. We focused on DEGs related to the regulation of flowering time, especially DEGs in QTL regions.ConclusionsWe identified 45 flowering time-related genes in these QTL regions, eight of which are DEGs, including key flowering time genes PSEUDO RESPONSE REGULATOR 7 (PRR7) and FY (located in a major QTL region on C02). These findings provide insights into the genetic architecture of flowering time in B. napus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据