4.6 Article

TMFUF: a triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs

期刊

BMC BIOINFORMATICS
卷 19, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12859-018-2379-8

关键词

Drug-drug interaction; Side effects; Matrix factorization; Prediction; Regression

资金

  1. RGC Collaborative Research Fund (CRF) of Hong Kong [C1008-16G]
  2. National High Technology Research and Development Program of China [2015AA016008]
  3. Fundamental Research Funds for the Central Universities of China [3102015ZY081]
  4. Program of Peak Experience of NWPU
  5. China National Training Programs of Innovation and Entrepreneurship for Undergraduates [201710699330]
  6. Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University [ZZ2018170, ZZ2018235]
  7. National Natural Science Foundation of China [61872297]

向作者/读者索取更多资源

Background: A significant number of adverse drug reactions is caused by unexpected Drug-drug interactions (DDIs). The identification of DDIs becomes crucial before the co-prescription of multiple drugs is made. Such a task in clinics or in drug discovery usually requires high costs and numerous limitations, while computational approaches are able to predict potential DDIs effectively by utilizing diverse drug attributes (e.g. side effects). Nevertheless, they're incapable when required to predict enhancive and degressive DDIs, which change increasingly and decreasingly the pharmacological behavior of interacting drugs respectively. The pharmacological change of DDIs is one of the most important factors when making a multi-drug prescription. Results: In this work, we design a Triple Matrix Factorization-based Unified Framework (TMFUF) to address the above issue. By leveraging a group of side effect entries of drugs, TMFUF achieves the inspiring result (AUC = 0.842 and AUPR = 0.526) in the case of conventional DDI prediction under the traditional screening task. In the comparison with two state-of-the-art approaches, TMFUF demonstrates it superiority by similar to 7% and similar to 20% improvement in terms of AUC and AUPR respectively. More importantly, TMFUF shows its ability in the comprehensive DDI prediction under different screening tasks. Finally, a utilization TMFUF reveals the significant pairs of side effects, which contribute to form enhancive and degressive DDIs, for further clinical validation. Conclusions: The proposed TMFUF is first capable to predict both conventional binary DDIs and comprehensive DDIs such that it captures the pharmacological changes caused by DDIs. Furthermore, it provides a unified solution of DDI prediction for two screening scenarios, which involves newly given drugs having no prior interaction. Another advantage is its ability to indicate how significantly the pairs of drug features contribute to form DDIs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据