4.5 Article

Probing tumor microtissue formation and epithelial-mesenchymal transition on a well-mesh microchip

期刊

BIOMICROFLUIDICS
卷 13, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5064838

关键词

-

资金

  1. National Natural Science Foundation of China (NNSFC) [31800848]
  2. Shanghai Municipal Science and Technology Commission [16DZ2260601]
  3. Natural Science Foundation of Shanghai [15JC1400303]

向作者/读者索取更多资源

Three-dimensional cultures of tumor microtissues and biomimetic simulation of tumor microenvironments are of great significance in the study of tumorigenesis and development processes. In this study, a well-mesh microchip was developed to realize the formation and culture of tumor microtissues in vitro. Human lung adenocarcinoma HCC827 cells and large-cell lung cancer NCI-H460 cells were used. The size and morphology of the microtissues have been observed. In addition, we constructed an in situ three-dimensional co-culture model with tumor cell microtissues (HCC827 or NCI-H460 cells), extracellular matrix (Matrigel), and human umbilical vein endothelial cells. HCC827 microtissue epithelial-mesenchymal transition (EMT) in the established well-mesh microchip also was investigated, and the results showed that recombinant transforming growth factor could activate the Snail and Akt gene and promote migration and EMT with the decrease of E-cadherin expression for HCC827. This well-mesh microchip features simple operation and easy observation, and could provide a new method for the study of tumor cells and tumor microenvironments in vitro. Therefore, this model has potential application value in organ-on-chip technology, tissue engineering, and drug evaluation. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据