4.8 Article

Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels

期刊

BIOMATERIALS
卷 188, 期 -, 页码 187-197

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2018.10.013

关键词

-

资金

  1. National Institute of Dental and Craniofacial Research of the National Institutes of Health [R01DE013033, U01CA214369, K08DE025292]
  2. Anne Marcus Wedner Graduate Research Fellowship
  3. Henry M. Thornton/SCADA Fellowship

向作者/读者索取更多资源

Materials that can mimic the fibrillar architecture of native extracellular matrix (ECM) while allowing for independent regulation of viscoelastic properties may serve as ideal, artificial ECM (aECM) to regulate cell functions. Here we describe an interpenetrating network of click-functionalized alginate, crosslinked with a combination of ionic and covalent crosslinking, and fibrillar collagen type I. Varying the mode and magnitude of crosslinking enables tunable stiffness and viscoelasticity, while altering neither the hydrogel's microscale architecture nor diffusional transport of molecules with molecular weight relevant to typical nutrients. Further, appropriately timing sequential ionic and covalent crosslinking permits self-assembly of collagen into fibrillar structures within the network. Culture of human mesenchymal stem cells (MSCs) in this mechanically-tunable ECM system revealed that MSC expression of immunomodulatory markers is differentially impacted by the viscoelasticity and stiffness of the matrix. Together, these results describe and validate a novel material system for investigating how viscoelastic mechanical properties of ECM regulate cellular behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据