4.7 Article

Degradable and Injectable Hydrogel for Drug Delivery in Soft Tissues

期刊

BIOMACROMOLECULES
卷 20, 期 1, 页码 149-163

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.8b01242

关键词

-

资金

  1. public Aix-Marseille Universite (AMU)
  2. STAR Carnot Institute grants
  3. ANR through the Eranet Neuron III program (Acrobat)
  4. Akademy of Finland [AK1308265]

向作者/读者索取更多资源

Injectable hydrogels are promising platforms for tissue engineering and local drug delivery as they allow minimal invasiveness. We have here developed an injectable and biodegradable hydrogel based on an amphiphilic PNIPAAm-b-PLA-b-PEG-b-PLA-b-PNIPAAm pentablock copolymer synthesized by ring-opening polymerization/nitroxide-mediated polymerization (ROP/NMP) combination. The hydrogel formation at around 30 degrees C was demonstrated to be mediated by intermicellar bridging through the PEG central block. Such a result was particularly highlighted by the inability of a PEG-b-PLA-b-PNIPAAm triblock analog of the same composition to gelify. The hydrogels degraded through hydrolysis of the PLA esters until complete mass loss due to the diffusion of the recovered PEG and PNIPAAm/micelle based residues in the solution. Interestingly, hydrophobic molecules such as riluzole (neuroprotective drug) or cyanine 5.5 (imaging probe) could be easily loaded in the hydrogels' micelle cores by mixing them with the copolymer solution at room temperature. Drug release was correlated to polymer mass loss. The hydrogel was shown to be cytocompatible (neuronal cells, in vitro) and injectable through a small-gauge needle (in vivo in rats). Thus, this hydrogel platform displays highly attractive features for use in brain/soft tissue engineering as well as in drug delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据