4.8 Article

Hierarchical wrinkling in a confined permeable biogel

期刊

SCIENCE ADVANCES
卷 1, 期 9, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1500608

关键词

-

资金

  1. the Programme d'Avenir Lyon-Saint Etienne (PALSE NoGELPo)
  2. Agence Nationale de la Recherche [ANR-11-PDOC-027]
  3. European Research Council [258803]
  4. Institut Universitaire de France
  5. Region Rhone Alpes
  6. European Research Council (ERC) [258803] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Confined thin surfaces may wrinkle as a result of the growth of excess material. Elasticity or gravity usually sets the wavelength. We explore new selection mechanisms based on hydrodynamics. First, inspired by yoghurt-making processes, we use caseins (a family of milk proteins) as pH-responsive building blocks and the acidulent glucono-d-lactone to design a porous biogel film immersed in a confined buoyancy-matched viscous medium. Under specific boundary conditions yet without any external stimulus, the biogel film spontaneously wrinkles in cascade. Second, using a combination of titration, rheology, light microscopy, and confocal microscopy, we demonstrate that, during continuous acidification, the gel first shrinks and then swells, inducing wrinkling. Third, taking into account both Darcy flow through the gel and Poiseuille flow in the surrounding solvent, we develop a model that correctly predicts the wrinkling wavelength. Our results should be universal for acid-induced protein gels because they are based on pH-induced charge stabilization/destabilization and therefore could set a benchmark to gain fundamental insights into wrinkled biological tissues, to texture food, or to design surfaces for optical purposes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据