4.3 Article

Application of sucrose modulates the expressions of genes involved in proline and polyamine metabolism in maize seedlings exposed to drought

期刊

BIOLOGIA PLANTARUM
卷 63, 期 -, 页码 247-252

出版社

ACAD SCIENCES CZECH REPUBLIC, INST EXPERIMENTAL BOTANY
DOI: 10.32615/bp.2019.028

关键词

arginine decarboxylase; diamine oxidase; hydrogen peroxide; polyamine oxidase; proline dehydrogenase; pyrroline-5-carboxylate synthetase; S-adenosylmethionine decarboxylase

资金

  1. Turkish National Science Foundation [111T511]

向作者/读者索取更多资源

Sucrose, proline, and polyamines are compatible solutes accumulating in plant tissues and increasing cellular osmolarity under environmental stresses. These compatible solutes and hydrogen peroxide can function as signaling molecules in plants. There has been very little evidence how the supply of sucrose changes the biosynthesis of compatible solutes. This study aimed to assess the cross-talk among sucrose, H2O2, and compatible solutes on the expression of genes encoding key enzymes in the pathways of proline and polyamine metabolism in drought stressed maize seedlings. Drought stress (induced by polyethylene glycol solution) increased the expressions of genes encoding pyrroline-5-carboxylate synthetase (P5CS), arginine decarboxylase (ADC), and S-adenosylmethionine decarboxylase (SAMDC), while decreased proline dehydrogenase (ProDH), diamine oxidase (DAO), and polyamine oxidase (PAO) expressions. Addition of sucrose to the stressed seedlings increased the P5CS, ADC and SAMDC expressions more than drought stress alone and reduced more the ProDH, DAO, and PAO expressions. Moreover, exogenous sucrose increased leaf water potential and the content of proline, polyamines, and total soluble sugars, whereas decreased H2O2 content and membrane damages under the drought stress conditions. Consequently, exogenous sucrose contributed to the preservation of water status and the amelioration of damage in maize seedlings under the drought stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据