4.7 Article

Amphiphilic Glycopolypeptide Star Copolymer-Based Cross-Linked Nanocarriers for Targeted and Dual-Stimuli-Responsive Drug Delivery

期刊

BIOCONJUGATE CHEMISTRY
卷 30, 期 3, 页码 633-646

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.bioconjchem.8b00831

关键词

-

资金

  1. CSIR, New Delhi
  2. UGC

向作者/读者索取更多资源

Glycopolypeptide-based nanocarriers are an attractive class of drug delivery vehicles because of the involvement of carbohydrates in the receptor-mediated endocytosis process. To enhance their efficacy toward controlled and programmable drug delivery, we have prepared stable glycopolypeptide-based bioactive dual-stimuli-responsive (redox and enzyme) micelles for delivery of anticancer drugs specifically to the cancer cells. The amphiphilic biocompatible miktoarm star copolymer, which comprises two hydrophobic poly(epsilon-caprolactone) blocks, a short poly-(propargyl glycine) middle block, and a hydrophilic galactose glycopolypeptide block, was designed and synthesized. The star copolymer is initially self-assembled into un-cross-linked (UCL) micelles, and free alkyne groups at the core shell interface of the UCL micelles, which were cross-linked by bis(azidoethyl) disulfide (BADS) via click chemistry to form interface cross linked (ICL) micelles. ICL micelles were found to be stable against dilution. BADS imparted redox-responsive properties to the micelles, while PCL rendered them enzyme-degradable. Dual-stimuli-responsive release behavior with Dox as model drug was studied individually as well as synergistically by applying two stimuli in different sequences. The galactose-containing UCL and ICL micelles were shown to be nontoxic. Intracellular Dox release from UCL and ICL micelles was demonstrated in liver cancer cells (HepG2) by time-dependent cellular uptake studies, and controlled release from ICL micelles compared to UCL micelles was observed. The present report opens a new approach toward targeted and programmable drug delivery in tumor tissues via a specifically targeted (receptor-mediated), dual-responsive, and stable cross-linked nanocarrier system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据