4.4 Article

Clostridium sordellii Lethal-Toxin Autoprocessing and Membrane Localization Activities Drive GTPase Glucosylation Profiles in Endothelial Cells

期刊

MSPHERE
卷 1, 期 1, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mSphere.00012-15

关键词

cytotoxins; membranes; glucosylation; GTPases

资金

  1. HHS \ NIH \ National Institute of Allergy and Infectious Diseases (NIAID) [AI095755]
  2. Burroughs Wellcome Fund (BWF)

向作者/读者索取更多资源

Clostridium sordellii infections cause gangrene and edema in humans and gastrointestinal infections in livestock. One of the principle virulence factors is TcsL, a large protein toxin which glucosylates host GTPases to cause cytopathic and cytotoxic effects. TcsL has two enzymatic domains, an N-terminal glucosyltransferase domain (GTD) and an autoprocessing domain responsible for release of the GTD within the cell. The GTD can then use its N-terminal membrane localization domain (MLD) for orientation on membranes and modification of GTPases. This study describes the use of conditionally immortalized murine pulmonary microvascular endothelial cells as a model for the study of TcsL functional activities. Point mutations that disrupt the glucosyltransferase, autoprocessing, or membrane localization activities were introduced into a recombinant version of TcsL, and the activities of these mutants were compared to those of wild-type toxin. We observed that all mutants are defective or impaired in cytotoxicity but differ in their modification of Rac1 and Ras. The data suggest a model where differences in GTPase localization dictate cellular responses to intoxication and highlight the importance of autoprocessing in the function of TcsL. IMPORTANCE Clostridium sordellii is a bacterium that can infect humans and cause serious disease and death. The principle virulence factor associated with clinical symptoms is a large protein toxin known as lethal toxin. The mechanism of lethal-toxin intoxication is assumed to be similar to that of the homologous toxins from C. difficile, but very few studies have been done in the context of endothelial cells, a relevant target in C. sordellii infections. This study was designed to test the role of the lethal-toxin enzymatic activities and membrane localization in endothelial cell toxicity and host substrate modification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据