4.6 Article

Ring structure in the MWC 480 disk revealed by ALMA

期刊

ASTRONOMY & ASTROPHYSICS
卷 622, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201834157

关键词

protoplanetary disks; planet-disk interactions; radiative transfer; stars: formation; stars: individual: MWC 480

资金

  1. Natural Science Foundation of Jiangsu Province of China [BK20181513]
  2. Natural Science Foundation of China [11503087]
  3. European Research Council (ERC) under the European Union [681601]
  4. project PRIN-INAF 2016 The Cradle of Life -GENESIS-SKA (General Conditions in Early Planetary Systems for the rise of life with SKA)
  5. National Science Foundation of China [11473005, 11773002]
  6. European Union A-ERC grant [291141 CHEMPLAN]
  7. NWO
  8. ANR of France [ANR-16-CE31-0013]
  9. NRC Canada
  10. NSERC
  11. ESO Fellowship
  12. STFC
  13. Large Facilities Capital Fund of BIS via STFC capital grants [ST/K000373/1, ST/R002363/1]
  14. STFC DiRAC Operations grant [ST/R001014/1]
  15. KNAW
  16. STFC [ST/R001049/1, ST/M007618/1, ST/R000832/1, ST/R00689X/1, ST/T001372/1, ST/S002529/1, ST/M007065/1, ST/M007006/1, ST/R001006/1, ST/M007073/1, ST/R001014/1, ST/T001569/1, ST/T001348/1, ST/T001550/1, ST/M006948/1] Funding Source: UKRI

向作者/读者索取更多资源

Gap-like structures in protoplanetary disks are likely related to planet formation processes. In this paper, we present and analyze high-resolution (0.17 '' x 0.11 '') 1.3 mm ALMA continuum observations of the protoplanetary disk around the Herbig Ae star MWC480. Our observations show for the first time a gap centered at similar to 74 au with a width of similar to 23 au, surrounded by a bright ring centered at similar to 98 au from the central star. Detailed radiative transfer modeling of the ALMA image and the broadband spectral energy distribution is used to constrain the surface density profile and structural parameters of the disk. If the width of the gap corresponds to 4-8 times the Hill radius of a single forming planet, then the putative planet would have a mass of 0.4-3 M-J. We test this prediction by performing global three-dimensional smoothed particle hydrodynamic gas/dust simulations of disks hosting a migrating and accreting planet. We find that the dust emission across the disk is consistent with the presence of an embedded planet with a mass of similar to 2.3 M-J at an orbital radius of similar to 78 au. Given the surface density of the best-fit radiative transfer model, the amount of depleted mass in the gap is higher than the mass of the putative planet, which satisfies the basic condition for the formation of such a planet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据