4.7 Article

Applying multi-objective ant colony optimization algorithm for solving the unequal area facility layout problems

期刊

APPLIED SOFT COMPUTING
卷 74, 期 -, 页码 167-189

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2018.10.012

关键词

Facility layout problem; Ant colony optimization; Multi-objective optimization; Pareto optimal; Preference

资金

  1. Natural Science Foundation of Jiangsu Province [BK20181409, BK20171458]
  2. National Natural Science Foundation of China [61373016]
  3. Major Program of the National Social Science Foundation of China [16ZDA047]

向作者/读者索取更多资源

The unequal area facility layout problem (UA-FLP) which deals with the layout of departments in a facility comprises of a class of extremely difficult and widely applicable multi-objective optimization problems with constraints arising in diverse areas and meeting the requirements for real-world applications. Based on the heuristic strategy, the problem is first converted into an unconstrained optimization problem. Then, we use a modified version of the multi-objective ant colony optimization (MOACO) algorithm which is a heuristic global optimization algorithm and has shown promising performances in solving many optimization problems to solve the multi-objective UA-FLP. In the modified MOACO algorithm, the ACO with heuristic layout updating strategy which is proposed to update the layouts and add the diversity of solutions is a discrete ACO algorithm, with a difference from general ACO algorithms for discrete domains which perform an incremental construction of solutions but the ACO in this paper does not. We propose a novel pheromone update method and combine the Pareto optimization based on the local pheromone communication and the global search based on the niche technology to obtain Pareto-optimal solutions of the problem. In addition, the combination of the local search based on the adaptive gradient method and the heuristic department deformation strategy is applied to deal with the non-overlapping constraint between departments so as to obtain feasible solutions. Ten benchmark instances from the literature are tested. The experimental results show that the proposed MOACO algorithm is an effective method for solving the UA-FLP. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据