4.6 Article

Non-contact ultrasonic resonant spectroscopy resolves the elastic properties of layered plant tissues

期刊

APPLIED PHYSICS LETTERS
卷 113, 期 25, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5064517

关键词

-

资金

  1. Spanish State Research Agency
  2. European Regional Development Fund (ERDF/FEDER) [DPI2016-78876-R]

向作者/读者索取更多资源

This paper describes the application of the wide-band non-contact ultrasonic resonant spectroscopy technique to layered plant tissues (leaves), a method to extract the properties of main component tissues: palisade parenchyma and spongy mesophyll, a verification of the obtained properties, and a discussion of the implications of the observed elastic anisotropy. Transmission coefficient spectra of Ligustrum lucidum leaves with the thickness in the range of 250-850 mu m revealing several order thickness resonances have been measured. A leaf acoustic model based on a two-layered structure and a metaheuristic (simulated annealing algorithm) is used to solve the inverse problem. The extracted parameters of these two layers of tissue are consistent with cross-sectional cryo-SEM images and other independent measurements. The extracted resonant frequency and the impedance of each layer explain the origin of the observed resonances. Finally, the elastic modulus of each layer is extracted and analyzed. The presented technique is a unique tool to study (in vivo and in a completely non-invasive way) the ultrasonic, elastic, and viscoelastic properties of layered plant tissues which could lead to a better understanding of the relationship between the tissue microstructure and the tissue function with macroscopic properties and how this may affect water relations. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据