4.7 Article

Nonlinear finite element solutions of thermoelastic deflection and stress responses of internally damaged curved panel structure

期刊

APPLIED MATHEMATICAL MODELLING
卷 65, 期 -, 页码 303-317

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2018.08.014

关键词

Nonlinear bending; Delaminated composite structure; Green-Lagrange strain; HSDT; Finite element analysis

向作者/读者索取更多资源

Thermoelastic deflection and corresponding stresses of the pre-damaged layered panel structure are investigated numerically in this article including the large deformation kinematics under the linearly varying temperature field. The composite structural deformation kinematics is derived using two different polynomial type of kinematic theories including the through-thickness stretching effect. The inter-laminar separation between the adjacent layers is incurred via the sub-laminate approach and Green-Lagrange strain to count the total structural deformation. Also, the intermittent displacement continuity conditions are imposed in the current mathematical model to establish the displacement continuity between the separated layers. The variational principle is adopted for the evaluation of the nonlinear structural equilibrium equations and solved via total Lagrangian approach. The convergence and the corresponding validity of the currently derived nonlinear finite element solutions are checked by solving different sets of numerical examples. Additionally, the comprehensive inferences are drawn from various numerical examples for the well-defined important input parameter including the size, position, and location of delamination. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据