4.8 Article

Random forest regression for online capacity estimation of lithium-ion batteries

期刊

APPLIED ENERGY
卷 232, 期 -, 页码 197-210

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2018.09.182

关键词

Lithium-ion battery; On-line capacity estimation; State of health; Random forest regression; Incremental capacity analysis

资金

  1. ENGIE Laborelec

向作者/读者索取更多资源

Machine-learning based methods have been widely used for battery health state monitoring. However, the existing studies require sophisticated data processing for feature extraction, thereby complicating the implementation in battery management systems. This paper proposes a machine-learning technique, random forest regression, for battery capacity estimation. The proposed technique is able to learn the dependency of the battery capacity on the features that are extracted from the charging voltage and capacity measurements. The random forest regression is solely based on signals, such as the measured current, voltage and time, that are available onboard during typical battery operation. The collected raw data can be directly fed into the trained model without any pre-processing, leading to a low computational cost. The incremental capacity analysis is employed for the feature selection. The developed method is applied and validated on lithium nickel manganese cobalt oxide batteries with different ageing patterns. Experimental results show that the proposed technique is able to evaluate the health states of different batteries under varied cycling conditions with a root-mean-square error of less than 1.3% and a low computational requirement. Therefore, the proposed method is promising for online battery capacity estimation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据