4.8 Article

Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning

期刊

APPLIED ENERGY
卷 233, 期 -, 页码 930-942

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2018.10.113

关键词

Deep learning; Stacked sparse autoencoder; Automated feature learning; Simultaneous fault diagnosis; SOFC system

资金

  1. National Natural Science Foundation of China [51777122]

向作者/读者索取更多资源

Fault diagnosis technology is a vital tool for ensuring the stability and durability of solid oxide fuel cell systems. Simultaneous faults are common problems in modern industrial systems. Many fault diagnosis methods have been successfully designed for solid oxide fuel cell systems, but they only address independent faults, and only a few researchers have studied simultaneous fault diagnosis. The design of a simultaneous fault diagnosis method for solid oxide fuel cell systems remains a huge challenge. This study introduces a deep learning technology into the simultaneous fault diagnosis for the solid oxide fuel cell system and proposes a novel simultaneous fault diagnosis method on the basis of a deep learning network called stacked sparse autoencoder. The proposed method can automatically capture the essential features from the original system variables, thereby consuming minimal time on heavily hand-crafted features. Moreover, massive unlabeled samples are fully utilized through the proposed method. Experimental results show that the proposed method can diagnose simultaneous faults with high accuracy requiring only a few independent fault samples and a minimal number of simultaneous fault samples. Comparisons between traditional machine learning methods and experimental results on training sets of different sizes verify the superiority of the proposed method. Deep learning provides an effective and promising approach for simultaneous fault diagnosis in the field of fuel cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据