4.4 Article

Experimental and numerical investigation of fully developed forced convection of water-based Fe3O4 nanofluid passing through a tube in the presence of an alternating magnetic field

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1687814015571023

关键词

Ferrofluid; nanoparticles; convection; alternating magnetic field

向作者/读者索取更多资源

The effect of a magnetic field on the fully developed forced convection of Fe3O4 flow inside a copper tube is experimentally and numerically investigated. The flow is assumed to be under uniform heat flux. This study aims to examine the effects of the nanoparticle volume fraction, as well as alternating magnetic field strength and frequency, on the convective heat transfer for different Reynolds numbers. To ensure accuracy, the numerical results are validated by empirical results with similar geometry and boundary conditions. A satisfying agreement was achieved. The results show that the heat transfer increases with increase in alternating magnetic field frequency but decreases with increase in volume fraction. At a fixed Reynolds number, increased frequency of the alternating magnetic field leads to an increase in the local heat transfer coefficient; however, this increase is unproportional to that of frequency. In high frequencies, increase in frequency leads to a slight increase in the heat transfer coefficient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据