4.8 Article

Combination of Magnetic-Beads-Based Multiple Metal Nanoparticles Labeling with Hybridization Chain Reaction Amplification for Simultaneous Detection of Multiple Cancer Cells with Inductively Coupled Plasma Mass Spectrometry

期刊

ANALYTICAL CHEMISTRY
卷 91, 期 1, 页码 1171-1177

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.8b05085

关键词

-

资金

  1. NSFC [21677034]
  2. National Key Research and Development Program of China [2017YFC1600500]
  3. Fujian Provincial Department of Science and Technology [2016Y0005]
  4. Program for Changjiang Scholars and Innovative Research Team in University [IRT-15R11]

向作者/读者索取更多资源

The high-throughput and rapid screening of cancer cells in blood is one of the most effective ways to realize clinical early diagnosis of cancer. We herein developed an inductively coupled plasma mass-spectrometry (ICP-MS)-based method for simultaneously counting two cancer cells, human hepatocellular carcinoma cell (SMMC-7721) and human lung carcinoma cell (A549), with high sensitivity and specificity. The method employed a magnetic-beads (MBs)-based dual aptamers-dual metal nanoparticles labeling technique for simultaneously recognizing and labeling different metal nanoparticles (AuNPs and AgNPs) on SMMC-7721 and A549 cancer cells, respectively, to generate ICP-MS signals, and a DNA hybridization chain reaction strategy for realizing one SMMC-7721 cell-to-massive AuNPs and one A549 cell-to-massive AgNPs amplification effect to improve sensitivity. The employment of ICP-MS detection and MBs not only simplified the experimental operation but also greatly enhanced the resistance of the method to the complicated matrix. The method can be used to simultaneously detect as few as 50 SMMC-7721 and A549 cancer cells in serum within 1 h with a recovery of 93-108% and a relative standard deviation (RSD, n = 5) < 5%. The method has notable advantages such as high sensitivity, excellent stability, high throughput, shorter analysis time, and strong resistibility to the complex matrix. Especially, the method can also be used to detect various cancer cells via altering aptamers and designing appropriate link/signal probes according to the target cells. The success of this study offers a potential approach for the high-throughput and rapid screening of cancer cells in clinical early diagnosis of cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据