4.8 Article

Ingenious Dual-Photoelectrode Internal-Driven Self-Powered Sensing Platform for the Power Generation and Simultaneous Microcystin Monitoring Based on the Membrane/Mediator-Free Photofuel Cell

期刊

ANALYTICAL CHEMISTRY
卷 91, 期 3, 页码 1728-1732

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.8b05509

关键词

-

资金

  1. National Natural Science Foundation of China [21375050, 21505055, 61601204, 21675066]
  2. Provincial Natural Science Foundation of Jiangsu [BK20160542]
  3. Research Foundation of Zhenjiang Science and Technology Bureau [NY2016011]
  4. Foundation of Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Qingdao University of Science and Technology [SATM201807]

向作者/读者索取更多资源

To further heighten solar-energy utilization efficiency could be significantly meaningful for developing useful photoelectric devices. Here, by integrating the nitrogen doped graphene-BiOBr (NG-BiOBr) nanocomposites as a photocathode with titanium dioxide (TiO2) nanoparticles as a photoanode synchronously, a dual-photoelectrode internally driven self-powered sensing platform was fabricated, which can work without an external energy input except for light illumination. In this design, the microcystin-LR (MC-LR) molecules function as the fuel and model analyte as well. Avoiding the use of the costly cathode, this is the first example of the integration of a dual photoresponsive electrode into a photofuel cell for self-powered sensing and paves a luciferous way for efficient multidimension energy conversion. Besides, in order to investigate the detailed sensing process of the self-powered system, the Nyquist curves of the interface are studied between the dual-photoelectrode before and after adding the target MC-LR. The results demonstrated that the photoanode TiO2 contributed to the oxidation of MC-LR under photoirradiation rather than the photocathode. This work not only provides an appealing idea to construct the sensitive and easy-to-use assays of microcystins but also exhibits a successful prototype of a portable and on-site sensor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据