4.8 Article

Quantification and Stability Determination of Surface Amine Groups on Silica Nanoparticles Using Solution NMR

期刊

ANALYTICAL CHEMISTRY
卷 90, 期 22, 页码 13322-13330

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.8b02803

关键词

-

资金

  1. Environment and Climate Change Canada
  2. Natural Sciences and Engineering Research Council

向作者/读者索取更多资源

Surface chemistry is a critical factor for determining the behavior of a nanomaterial after incorporation in composites, devices, and biomedical products, and is also important for nanotoxicology studies. We have developed an optimized protocol for dissolution of aminated silicas and determination of functional-group contents by quantitative H-1 NMR (qNMR) analysis of the released amines. A number of variables were optimized for the dissolution protocol, including the base concentration, mass of silica, time, temperature, and method of sample agitation, in order to achieve adequate NMR signals for quantification. The protocol was tested using nanoparticles from a single commercial supplier with sizes ranging from 20 to 120 nm that were functionalized with 3-aminopropyl groups. Interestingly the batch-to-batch variability for some sizes of these aminated silicas was as high as 50%. Amine contents measured by a ninhydrin colorimetric assay were typically similar to 20% lower than those measured by qNMR, consistent with measurement of only ninhydrin-reagent accessible amines. The dissolution-qNMR protocol was compatible with aminated silicas from other commercial suppliers, and in these cases, an even larger variability in surface coverage was observed. Silica nanoparticles with longer-chain amines and variable amine loadings were synthesized to demonstrate the ability to quantify amines with more complex structures and to assess the limit of quantification for the dissolution-qNMR method. Finally, the stability of the aminated nanoparticles was examined. Loss of 3-aminopropyl groups occurred in water at room temperature and was significantly more rapid at higher temperatures. Amine loss increased with increasing surface coverage and was slower for long-chain amines, consistent with studies of amine stability on planar silica. Overall, this work highlights the importance of developing methods for quantifying surface functionalization, particularly given the variability in surface coverage for commercial samples, and for ensuring that the amine group is stable under its usage conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据