4.7 Article

DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis

期刊

ANALYTICA CHIMICA ACTA
卷 1058, 期 -, 页码 48-57

出版社

ELSEVIER
DOI: 10.1016/j.aca.2019.01.002

关键词

Chemometrics; Inception; Convolutional neural network; Model accuracy; Repeatability

资金

  1. Thousand Young Talents Program of China
  2. Zhejiang University

向作者/读者索取更多资源

Learning patterns from spectra is critical for the development of chemometric analysis of spectroscopic data. Conventional two-stage calibration approaches consist of data preprocessing and modeling analysis. Misuse of preprocessing may introduce artifacts or remove useful patterns and result in worse model performance. An end-to-end deep learning approach incorporated Inception module, named DeepSpectra, is presented to learn patterns from raw data to improve the model performance. DeepSpectra model is compared to three CNN models on the raw data, and 16 preprocessing approaches are included to evaluate the preprocessing impact by testing four open accessed visible and near infrared spectroscopic datasets (corn, tablets, wheat, and soil). DeepSpectra model outperforms the other three convolutional neural network models on four datasets and obtains better results on raw data than in preprocessed data for most scenarios. The model is compared with linear partial least square (PLS) and nonlinear artificial neural network (ANN) methods and support vector machine (SVR) on raw and preprocessed data. The results show that DeepSpectra approach provides improved results than conventional linear and nonlinear calibration approaches in most scenarios. The increased training samples can improve the model repeatability and accuracy. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据