4.5 Article

Improved Five- and Six-Point Targeted Essentially Nonoscillatory Schemes with Adaptive Dissipation

期刊

AIAA JOURNAL
卷 57, 期 3, 页码 1143-1158

出版社

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.J057370

关键词

-

资金

  1. China Scholarship Council [201206290022]
  2. National Natural Science Foundation of China [11628206]

向作者/读者索取更多资源

This Paper proposes an improvement of the five- and six-point targeted essentially nonoscillatory (TENO5 and TENO6) schemes by introducing an adaptive dissipation-control strategy. Nonlinear numerical dissipation is controlled by dynamically adjusting the cutoff parameter in the TENO weighting strategy according to the first-order smoothness measure of the local flow scales. For the five-point reconstruction, the dissipation bandwidth of the underlying linear scheme is delayed by introducing slight antidissipation at low wave numbers with small dispersion errors. A new sixth-order scale-separation parameter tau 5 is derived, and the modified TENO5-A scheme is third-order accurate. For the six-point reconstruction, the dispersion and dissipation errors are optimized separately, resulting in a modified fourth-order TENO6-A scheme. All necessary parameters are determined by spectral analyses and are shown to be problem independent by numerical experiments. A set of benchmark cases, including highly compressible gas dynamics and nearly incompressible and compressible turbulence decay, is considered. Numerical experiments demonstrate that both the proposed TENO5-A and TENO6-A schemes show excellent performance for shocks and broadband turbulence. The turbulence statistics obtained with TENO6-A at coarse resolution are comparable to those from the state-of-the-art implicit large-eddy simulation model and agree well with direct numerical simulation data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据