4.6 Article

DNA methylation-based age prediction and telomere length in white blood cells and cumulus cells of infertile women with normal or poor response to ovarian stimulation

期刊

AGING-US
卷 10, 期 12, 页码 3761-3773

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/aging.101670

关键词

methylation; reproductive aging; epigenetics; epigenetic clock; telomere; cumulus cells

资金

  1. Foundation for Embryonic Competence, Basking Ridge, NJ, USA

向作者/读者索取更多资源

An algorithm assessing the methylation levels of 353 informative CpG sites in the human genome permits accurate prediction of the chronologic age of a subject. Interestingly, when there is discrepancy between the predicted age and chronologic age (age acceleration or AgeAccel), patients are at risk for morbidity and mortality. Identification of infertile patients at risk for accelerated reproductive senescence may permit preventative action. This study aimed to assess the accuracy of the epigenetic clock concept in reproductive age women undergoing fertility treatment by applying the age prediction algorithm in peripheral (white blood cells [WBCs]) and follicular somatic cells (cumulus cells [CCs]), and to identify whether women with premature reproductive aging (diminished ovarian reserve) were at risk of AgeAccel in their age prediction. Results indicated that the epigenetic algorithm accurately predicts age when applied to WBCs but not to CCs. The age prediction of CCs was substantially younger than chronologic age regardless of the patient's age or response to stimulation. In addition, telomeres of CCs were significantly longer than that of WBCs. Our findings suggest that CCs do not demonstrate changes in methylome-predicted age or telomere-length in association with increasing female age or ovarian response to stimulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据