4.8 Article

Lithiophilic 3D Nanoporous Nitrogen-Doped Graphene for Dendrite-Free and Ultrahigh-Rate Lithium-Metal Anodes

期刊

ADVANCED MATERIALS
卷 31, 期 2, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201805334

关键词

batteries; dendrite suppression; Li-metal anodes; nanoporous N-doped graphene

资金

  1. JST-CREST Phase Interface Science for Highly Efficient Energy Utilization, JST (Japan)
  2. Fusion Research Funds from WPI-AIMR, Tohoku University

向作者/读者索取更多资源

The key bottlenecks hindering the practical implementations of lithium-metal anodes in high-energy-density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high-surface-area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen-doped graphene as the sought-after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite-free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long-term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high-energy-density rechargeable lithium batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据