4.8 Article

The Development of Cocatalysts for Photoelectrochemical CO2 Reduction

期刊

ADVANCED MATERIALS
卷 31, 期 31, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201804710

关键词

charge transfer; CO2 reduction; cocatalysts; photoelectrochemical cells

资金

  1. National Key R&D Program of China [2016YFB0600901]
  2. National Natural Science Foundation of China [21525626, U1463205, 21722608]
  3. Program of Introducing Talents of Discipline to Universities [B06006]

向作者/读者索取更多资源

The ever-increasing anthropogenic consumption of fossil fuels and the resulting large emission of CO2 have led to a severe energy crisis and climate change. Photocatalytic reduction of CO2 into fuels using solar energy is considered as a promising way to address these two problems. In particular, photoelectrochemical (PEC) reduction of CO2 can integrate and optimize the advantages of both photocatalysis and electrocatalysis for improved conversion efficiency and selectivity. In addition to the charge generation and separation, the efficient reduction of CO2 on the surface of a semiconductor-based photoelectrode remains a scientifically critical challenge, which can be greatly enhanced by the surface modification of cocatalysts. Herein, the recent developments of cocatalysts in PEC CO2 reduction over semiconductor-based photoelectrodes are described, and the basic principles of PEC CO2 reduction and the function of the cocatalyst in photoelectrocatalysis are discussed. The structure optimization between the photoelectrodes and the cocatalysts is also summarized since the loading of cocatalyst may shield the incident light and hinder charge transfer between them. Furthermore, the challenges and perspectives for PEC reduction of CO2 are also presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据