4.8 Article

Diboron-Assisted Interfacial Defect Control Strategy for Highly Efficient Planar Perovskite Solar Cells

期刊

ADVANCED MATERIALS
卷 30, 期 49, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201805085

关键词

defects; diboron; interface; perovskite solar cells; unreacted FAI

资金

  1. National Natural Science Foundation of China [91733301, 61722501, 91433203, 61377025, U1705256]
  2. 973 Program of China [2015CB932203]
  3. China Postdoctoral Science Foundation [2017M620519]

向作者/读者索取更多资源

Metal halide perovskite films are endowed with the nature of ions and polycrystallinity. Formamidinium iodide (FAI)-based perovskite films, which include large cations (FA) incorporated into the crystal lattice, are most likely to induce local defects due to the presence of the unreacted FAI species. Here, a diboron-assisted strategy is demonstrated to control the defects induced by the unreacted FAI both inside the grain boundaries and at the surface regions. The diboron compound (C12H10B2O4) can selectively react with unreacted FAI, leading to reduced defect densities. Nonradiative recombination between a perovskite film and a hole-extraction layer is mitigated considerably after the introduction of the proposed approach and charge-carrier extraction is improved as well. A champion power conversion efficiency of 21.11% is therefore obtained with a stabilized power output of 20.83% at the maximum power point for planar perovskite solar cells. The optimized device also delivers negligible hysteresis effect under various scanning conditions. This approach paves a new way for mitigating defects and improving device performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据