4.8 Article

Emergence of Topological Hall Effect in a SrRuO3 Single Layer

期刊

ADVANCED MATERIALS
卷 31, 期 8, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201807008

关键词

ionic liquid gating; oxide spintronics; oxygen octahedron rotation; topological Hall effect

资金

  1. Singapore National Research Foundation under CRP Award [NRF-CRP10-2012-02]

向作者/读者索取更多资源

Topological Hall effect (THE), appearing as bumps and/or dips in the Hall resistance curves, is considered as a hallmark of the skyrmion spin texture originated from the inversion symmetry breaking and spin-orbit interaction. Recently, Neel-type skyrmion is proposed based on the observed THE in 5d transition metal oxides heterostructures such as SrRuO3/SrIrO3 bilayers, where the interfacial Dzyaloshinskii-Moriya interaction (DMI), due to the strong spin-orbit coupling (SOC) in SrIrO3 and the broken inversion symmetry at the interface, is believed to play a significant role. Here the emergence of THE in SrRuO3 single layers with thickness ranging from 3 to 6 nm is experimentally demonstrated. It is found that the oxygen octahedron rotation in SrRuO3 also has a significant effect on the observed THE. Furthermore, the THE may be continuously tuned by an applied electrical field. It is proposed that the large SOC of Ru ions together with the broken inversion symmetry, mainly from the interface, produce the DMI that is responsible for the observed THE. The emergence of the gate-tunable DMI in SrRuO3 single layer may stimulate further investigations of new spin-orbit physics in strong SOC oxides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据