4.8 Article

Bismuth Sulfide Nanorods with Retractable Zinc Protoporphyrin Molecules for Suppressing Innate Antioxidant Defense System and Strengthening Phototherapeutic Effects

期刊

ADVANCED MATERIALS
卷 31, 期 10, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201806808

关键词

bismuth sulfide; heme oxygenase-1; near-infrared; photodynamic therapy; zinc protoporphyrin IX

资金

  1. National Natural Science Foundation of China [21703232, 21573216, 21777152]
  2. Hundred Talent Program of Chinese Academy of Sciences
  3. Science and Technology Development Project Foundation of Jilin Province [20180520145JH, 20160101304JC]

向作者/读者索取更多资源

Bismuth (Bi)-based nanomaterials (NMs) are widely used for computed tomography (CT) imaging guided photothermal therapy, however, the photodynamic property is hardly exhibited by these NMs due to the fast electron-hole recombination within their narrow bandgap. Herein, a sophisticated nanosystem is designed to endow bismuth sulfide (Bi2S3) nanorods (NRs) with potent photodynamic property. Zinc protoporphyrin IX (ZP) is linked to Bi2S3 NRs through a thermoresponsive polymer to form BPZP nanosystems. The stretching ZP could prebind to the active site of heme oxygenase-1 overexpressed in cancer cells, suppressing the cellular antioxidant defense capability. Upon NIR laser irradiation, the heat released from Bi2S3 NRs could retract the polymer and drive ZP to the proximity of Bi2S3 NRs, facilitating an efficient electron-hole separation in ZP and Bi2S3 NRs, and leading to reactive oxygen species generation. In vitro and in vivo studies demonstrate the promising photodynamic property of BPZP, together with their photothermal and CT imaging performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据