4.8 Article

Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization

期刊

ADVANCED MATERIALS
卷 30, 期 48, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201802068

关键词

interface engineering; lithium-metal anodes; solid-state batteries

向作者/读者索取更多资源

Lithium-metal batteries are considered one of the most promising energy-storage systems owing to their high energy density, but their practical applications have long been hindered by significant safety concerns and poor cycle stability. Solid-state electrolytes (SSEs) are expected to improve not only the safety but also the energy density of Li-metal batteries. The key challenge for solid-state Li-metal batteries lies in the low ionic conductivity of the SSEs and moreover the interface contact between the electrode and SSE. To achieve feasible solid-state Li-metal batteries, it is imperative that the ionic conductivity is improved, especially at the electrode-SSE interface. Herein, recent advances in interface engineering for solid-state Li-metal batteries are reported, mainly focusing on garnet-type SSEs. Various materials to modify the cathode-garnet and Li-garnet interfaces by intermediate layers, alloys, and polymer electrolytes are analyzed. Structural innovations for SSEs including composite electrolytes and multilayer SSE frameworks are reviewed, along with advanced characterization approaches to probe the interfaces, which will provide further insights for garnet-based solid-state batteries. Future challenges and the great promise of garnet-based Li-metal batteries are discussed to close.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据