4.8 Article

Heteroatom-Doped Carbon Materials for Hydrazine Oxidation

期刊

ADVANCED MATERIALS
卷 31, 期 13, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201804394

关键词

electrocatalysts; fuel cells; heteroatom-doped carbon; hydrazine oxidation reaction; metal-free catalysts

资金

  1. US National Science Foundation [NSF DMR-1508611]
  2. Rutgers Energy Institute (REI)

向作者/读者索取更多资源

The key in designing efficient direct liquid fuel cells (DLFCs), which can offer some solutions to society's grand challenges associated with sustainability and energy future, currently lies in the development of cost-effective electrocatalysts. Among the many types of fuel cells, direct hydrazine fuel cells (DHFCs) are of particular interest, especially due to their high theoretical cell voltages and clean emission. However, DHFCs currently use noble-metal-based electrocatalysts, and the scarcity and high cost of noble metals are hindering these fuel cells from finding large-scale practical applications. In order to replace noble-metal-based electrocatalysts with sustainable ones and help DHFCs become widely usable, great efforts are being made to develop stable heteroatom (e.g., B, N, O, P and S)-doped carbon electrocatalysts, the activities of which are comparable to, or better than, those of noble metals. Here, the recent research progress and the advancements made on the development of heteroatom-doped carbon materials, their general properties, their electrocatalytic activities toward the HzOR, and their dopant- and structure-related electrocatalytic properties for the HzOR are summarized. Perspectives on the different directions that the research endeavors in this field need to take in the future and the challenges associated with DHFCs are included.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据