4.8 Review

Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice

期刊

ADVANCED MATERIALS
卷 31, 期 47, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201802697

关键词

DFT calculations; hybrid perovskites; inverse hybrid perovskites; materials design; photovoltaic

资金

  1. German Research Foundation [GE 2827/1-1, GE 2827/2-1] Funding Source: Medline
  2. National Science Foundation [DMR/1719353] Funding Source: Medline

向作者/读者索取更多资源

Materials science evolves to a state where the composition and structure of a crystal can be controlled almost at will. Given that a composition meets basic requirements of stoichiometry, steric demands, and charge neutrality, researchers are now able to investigate a wide range of compounds theoretically and, under various experimental conditions, select the constituting fragments of a crystal. One intriguing playground for such materials design is the perovskite structure. While a game of mixing and matching ions has been played successfully for about 150 years within the limits of inorganic compounds, the recent advances in organic-inorganic hybrid perovskite photovoltaics have triggered the inclusion of organic ions. Organic ions can be incorporated on all sites of the perovskite structure, leading to hybrid (double, triple, etc.) perovskites and inverse (hybrid) perovskites. Examples for each of these cases are known, even with all three sites occupied by organic molecules. While this change from monatomic ions to molecular species is accompanied with increased complexity, it shows that concepts from traditional inorganic perovskites are transferable to the novel hybrid materials. The increased compositional space holds promising new possibilities and applications for the universe of perovskite materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据