4.8 Article

Personalized Hydrogels for Engineering Diverse Fully Autologous Tissue Implants

期刊

ADVANCED MATERIALS
卷 31, 期 1, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201803895

关键词

autologous; decellularized hydrogels; induced pluripotent stem cells; non-immunogenic; tissue engineering

资金

  1. Tel Aviv University Center for Nanosience and Nanotechnology
  2. European Research Council [637943]
  3. Slezak Foundation
  4. Israeli Science Foundation [700/13]
  5. Israel Ministry of Science, Technology and Space [3-12587]
  6. Moxie Foundation

向作者/读者索取更多资源

Despite incremental improvements in the field of tissue engineering, no technology is currently available for producing completely autologous implants where both the cells and the scaffolding material are generated from the patient, and thus do not provoke an immune response that may lead to implant rejection. Here, a new approach is introduced to efficiently engineer any tissue type, which its differentiation cues are known, from one small tissue biopsy. Pieces of omental tissues are extracted from patients and, while the cells are reprogrammed to become induced pluripotent stem cells, the extracellular matrix is processed into an immunologically matching, thermoresponsive hydrogel. Efficient cell differentiation within a large 3D hydrogel is reported, and, as a proof of concept, the generation of functional cardiac, cortical, spinal cord, and adipogenic tissue implants is demonstrated. This versatile bioengineering approach may assist to regenerate any tissue and organ with a minimal risk for immune rejection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据