4.8 Article

Strategies to Improve Luminescence Efficiency of Metal-Halide Perovskites and Light-Emitting Diodes

期刊

ADVANCED MATERIALS
卷 31, 期 47, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201804595

关键词

electroluminescence efficiency; light-emitting diodes; metal-halide perovskite; next-generation emitters; photoluminescence quantum efficiency

向作者/读者索取更多资源

Metal-halide perovskites (MHPs) are well suited to be vivid natural color emitters due to their superior optical and electrical properties, such as narrow emission linewidths, easily and widely tunable emission wavelengths, low material cost, and high charge carrier mobility. Since the first development of MHP light-emitting diodes (PeLEDs) in 2014, many researchers have tried to understand the properties of MHP emitters and the limitations to luminescence efficiency (LE) of PeLEDs, and have devoted efforts to increase the LE of MHP emitters and PeLEDs. Within three and half years, PeLEDs have shown rapidly increased LE from external quantum efficiency approximate to 0.1% to approximate to 14.36%. Herein, the factors that limit the LE of PeLEDs are reviewed; the factors are characterized into the following groups: i) photophysical properties of MHP crystals, ii) morphological factors of MHP layers, and iii) problems caused by device architectures. Then, the strategies to overcome those luminescence-limiting factors in MHP emitters and PeLEDs are critically evaluated. Finally, research directions to further increase the LE of MHP emitters and the potential of MHPs as a core component in next-generation displays and solid-state lightings are suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据