4.8 Article

Transition-Metal Oxynitride: A Facile Strategy for Improving Electrochemical Capacitor Storage

期刊

ADVANCED MATERIALS
卷 31, 期 10, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201806088

关键词

cycling stability; electrochemical capacitor storage; first principle; transition-metal oxynitride

资金

  1. NSFC [51572153, 51602177]
  2. Major Basic Program of the Natural Science Foundation of Shandong Province [ZR2017ZB0317]
  3. Natural Science Foundation of Shandong [ZR2018MEM013]

向作者/读者索取更多资源

The use of transition-metal oxide (TMO) as an extended-life electrochemical energy storage material remains challenging because TMO undergoes volume expansion during energy storage. In this work, a transition-metal oxynitride layer (TMON, M: Fe, Co, Ni, and V) was synthesized on TMO nanowires to address the crucial issue of volume expansion. The unique oxynitride layer possesses numerous active sites, excellent conductivity, and outstanding stability. These characteristics enhance specific capacitance and alleviate volume expansion effectively. Specifically, the specific capacity of the TMON electrode is enhanced by approximately twofold relative to that of its corresponding oxide. Notably, the capacitance of the TMON remains above 94% even after 10 000 cycles. This result indicates that the cycling performance of the TMON electrode is superior to that of its corresponding oxide. First-principles and quantitative kinetics analyses are performed to investigate the mechanism underlying the improved electrochemical performances of the TMON layers. Results demonstrate that the proposed TMON layer has attractive applications in the fields of energy storage, conversion, and beyond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据