4.8 Article

Fine Control of Perovskite Crystallization and Reducing Luminescence Quenching Using Self-Doped Polyaniline Hole Injection Layer for Efficient Perovskite Light-Emitting Diodes

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 29, 期 6, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201807535

关键词

crystal structure; exciton confinement; exciton quenching; hole injection material; perovskite light-emitting diode

资金

  1. Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) - Ministry of Science and ICT [NRF-2014M3A7B4051747]
  2. National Research Foundation of Korea (NRF) - Korea government (Ministry of Science and ICT) [NRF-2016R1A3B1908431]
  3. Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) - Ministry of Science and ICT [2018M3D1A1058536]
  4. National Research Foundation of Korea [2016R1A3B1908431, 2018M3D1A1058926] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Organic-inorganic hybrid perovskites (OHPs) are promising emitters for light-emitting diodes (LEDs) due to the high color purity, low cost, and simple synthesis. However, the electroluminescent efficiency of polycrystalline OHP LEDs (PeLEDs) is often limited by poor surface morphology, small exciton binding energy, and long exciton diffusion length of large-grain OHP films caused by uncontrolled crystallization. Here, crystallization of methylammonium lead bromide (MAPbBr(3)) is finely controlled by using a polar solvent-soluble self-doped conducting polymer, poly(styrenesulfonate)-grafted polyaniline (PSS-g-PANI), as a hole injection layer (HIL) to induce granular structure, which makes charge carriers spatially confined more effectively than columnar structure induced by the conventional poly(3,4-ethylenedioythiphene):polystyrenesulfonate (PEDOT:PSS). Moreover, lower acidity of PSS-g-PANI than PEDOT:PSS reduces indium tin oxide (ITO) etching, which releases metallic In species that cause exciton quenching. Finally, doubled device efficiency of 14.3 cd A(-1) is achieved for PSS-g-PANI-based polycrystalline MAPbBr(3) PeLEDs compared to that for PEDOT:PSS-based PeLEDs (7.07 cd A(-1)). Furthermore, PSS-g-PANI demonstrates high efficiency of 37.6 cd A(-1) in formamidinium lead bromide nanoparticle LEDs. The results provide an avenue to both control the crystallization kinetics and reduce the migration of In released from ITO by forming OIP films favorable for more radiative luminescence using the polar solvent-soluble and low-acidity polymeric HIL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据