4.8 Article

Transport and Charge Carrier Chemistry in Lithium Sulfide

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 29, 期 6, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201807688

关键词

antifluorite; conductivity; defect chemistry; Li2S; lithium sulfide

向作者/读者索取更多资源

Lithium sulfide is a functional material of great importance for battery research, since it is the discharge product in Li-S cathodes and a frequent component of anode passivation layers. In both cases, transport of charge carriers in Li2S is critical for performance. The exploration of charge carrier chemistry in such a simple binary compound is also of fundamental scientific interest. For that purpose, impedance spectroscopy and electromotive force measurements are performed over a broad range of temperatures and doping conditions. The results indicate predominant ion conduction and can be quantitatively explained by a defect chemical model based on Frenkel disorder and vacancy-dopant association. Mobilities and migration barriers for both vacancy and interstitial defects are deduced. The thermodynamic and kinetic parameters derived for Li+ transport in antifluorite Li2S show remarkable agreement with the analogous parameters for F- transport in fluorite compounds such as BaF2, thereby improving the structural understanding of charge carrier chemistry in such compounds. An application of these results to passivation layers in solid state batteries is also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据