4.8 Review

Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells?

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 29, 期 8, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201806482

关键词

2D perovskites; 3D perovskites; charge transport; interfacial engineering; stability

向作者/读者索取更多资源

The cost-effective processability and high efficiency of the organic-inorganic metal halide perovskite solar cells (PSCs) have shown tremendous potential to intervene positively in the generation of clean energy. However, prior to an industrial scale-up process, there are certain critical issues such as the lack of stability against over moisture, light, and heat, which have to be resolved. One of the several proposed strategies to improve the stability that has lately emerged is the development of lower-dimensional (2D) perovskite structures derived from the Ruddlesden-Popper (RP) phases. The excellent stability under ambient conditions shown by 2D RP phase perovskites has made the scalability expectations burgeon since it is one of the most credible paths toward stable PSCs. In this review, the 2D/3D mixed system for photovoltaics (PVs) is elaborately discussed with the focus on the crystal structure, optoelectronic properties, charge carrier dynamics, and their impact on the photovoltaic performances. Finally, some of the further challenges are highlighted while outlining the perspectives of 2D/3D perovskites for high-efficiency stable solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据