4.6 Article

Solid-Solution Effects on the High-Temperature Oxidation Behavior of Polymer-Derived (Hf,Ta)C/SiC and (Hf,Ti)C/SiC Ceramic Nanocomposites

期刊

ADVANCED ENGINEERING MATERIALS
卷 21, 期 5, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adem.201800879

关键词

hafnium carbide; high-temperature oxidation; passivation; solid solution; ultrahigh-temperature ceramic nanocomposites

资金

  1. German Science Foundation (DFG
  2. Bonn, Germany)
  3. R&D Convergence Program of MSIP (Ministry of Science, ICT and Future Planning)
  4. NST (National Research Council of Science & Technology) of Republic of Korea [CMIP-13-4-KIMS]

向作者/读者索取更多资源

In the present study, two concepts to improve the oxidation resistance at high-temperatures of ceramic nanocomposites consisting of 85-90 vol% SiC, 5-8 vol% group IV metal carbides (i.e., HfC, TaC), and 5-7 vol% carbon are introduced and discussed. First improvement concept relates to the passivation of the samples upon short-term oxidation at 1400 degrees C (30 min). This is a critical step, especially with respect to silica formation, which is relatively sluggish at temperatures lower than 1000-1200 degrees C. Moreover, solid-solution metal carbides (Hf,Ta)C and (Hf,Ti)C are shown to be clearly more oxidation resistant than the binary HfC and TaC phases. Whereas, the solid-solution effect contributes to a significant improvement of the short-term oxidation resistance of the studied nanocomposites, the passivation of the materials prior exposure of high-temperature oxidation conditions provides a remarkably improved long-term behavior thereof. Possible mechanisms involved in the oxidation processes of (Hf,Ta)C/SiC and (Hf,Ti)/SiC ceramic nanocomposites are highlighted and critically assessed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据