4.6 Article

Sulfamethoxazole and isoproturon degradation and detoxification by a laccase-mediator system: Influence of treatment conditions and mechanistic aspects

期刊

BIOCHEMICAL ENGINEERING JOURNAL
卷 103, 期 -, 页码 47-59

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bej.2015.06.008

关键词

Laccase; Micropollutant; Biotransformation; Enzyme biocatalysis; Wastewater treatment; Modelling

资金

  1. internal EPFL sources

向作者/读者索取更多资源

The potential of laccase-mediator systems (LMS) for the removal and detoxification of two wastewater micropollutants, the antibiotic sulfamethoxazole (SMX) and the herbicide isoproturon (IPN), was assessed. The influence of various parameters on micropollutant oxidation rates, such as pH, mediator, enzyme and pollutant concentrations, was investigated with three mediators: 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), syringaldehyde (SA) and acetosyringone (AS). Both pollutants were completely transformed within a few hours in presence of laccase and ABTS, as well as, for SMX, in presence of AS or SA. The three mediators were consumed during the reaction (no catalytic reactions observed), at a ratio mediator/pollutant between 1.1 and 16 mol/mol. Faster oxidation kinetics were observed at lower pH values, but also higher mediator/pollutant ratios were required. Several transformation products were formed, including cross-coupled products. Product mixtures were always less toxic to algae than untreated pollutants. Finally, a kinetic model that could explain the experimental observations was established. Based on the findings in this study LMS appears to be a promising option to treat concentrated and potentially toxic industrial effluents. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据